Pentosan polysulfate decreases proliferation and net extracellular matrix production in mouse mesangial cells.
نویسندگان
چکیده
Glomerulosclerosis is characterized by extracellular matrix accumulation and is often associated with mesangial cell proliferation. Heparin-like molecules have been shown to decrease glomerulosclerosis in vivo, although their cellular site and mechanism of action is still unclear. In this study, a line of glomerular mesangial cells derived from normal mice was used to determine whether pentosan polysulfate (PPS) inhibited proliferation and altered extracellular matrix turnover. Cells treated with PPS showed a decrease in cell number beginning 24 h after treatment, which was maintained for 5 d. For matrix accumulation and degradation studies, cells were treated for 5 d and collagen types I and IV protein were measured by enzyme-linked immunosorbent assay as well as matrix metalloproteinases (MMP) measured by zymography. Collagen types 1 and type IV were significantly decreased in the media (P < 0.0001) and cell layer (P < 0.005) after treatment with PPS but not after treatment with heparin. By zymography, MMP-2 was significantly increased after treatment with PPS (P < 0.001) and heparin (P < 0.05). PPS and heparin also decreased MMP-9 (P < 0.001) after treatment. Reverse zymography showed the presence of tissue inhibitors of metalloproteinases (TIMP)-1 and -2 in control mesangial cells. Treatment with PPS and heparin increased TIMP-1. In addition, TIMP-3 was found in the medium of treated but not control cells. In conclusion, PPS alters extracellular matrix turnover through the induction of MMP-2 and alterations in the TIMP profile and may be useful in decreasing progressive glomerulosclerosis.
منابع مشابه
Pentosan polysulfate prevents glomerular hypertension and structural injury despite persisting hypertension in 5/6 nephrectomy rats.
Five/six nephrectomy induces systemic and glomerular hypertension, glomerulosclerosis, proteinuria, and tubulointerstitial fibrosis. Polysulfate pentosan (PPS) decreases mesangial proliferation and extracellular matrix accumulation. The aim of this study was to determine whether PPS prevents glomerular hemodynamic changes and renal damage. Micropuncture studies were performed in three groups of...
متن کاملSeminars in Arthritis and Rheumatism
Objectives: Structure-modifying osteoarthritis (OA) drugs (SMOADs) may be defined as agents that reverse, retard, or stabilize the underlying pathology of OA, thereby providing symptomatic relief in the long-term. The objective of this review was to evaluate the literature on sodium pentosan polysulfate (NaPPS) and calcium pentosan polysulfate (CaPPS), with respect to the pathobiology of OA to ...
متن کاملPentosan Polysulfate Decreases Myocardial Expression of the Extracellular Matrix Enzyme ADAMTS4 and Improves Cardiac Function In Vivo in Rats Subjected to Pressure Overload by Aortic Banding
BACKGROUND We hypothesized that cleavage of the extracellular matrix (ECM) proteoglycans versican and aggrecan by ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases, which contributes to stress-induced ECM-reorganization in atherogenesis and osteoarthritis, also play a role in heart failure development. OBJECTIVES The primary objective was to identify alterations ...
متن کاملRapamycin at subimmunosuppressive levels inhibits mesangial cell proliferation and extracellular matrix production.
In view of its proven antiproliferative effects, rapamycin offers potential in the treatment of mesangioproliferative disease. Previous data have shown an effect of rapamycin on mesangial cell proliferation at high doses and have not explored the mechanism of action. Therefore, we explored the effects and mechanism of action of low levels of rapamycin on mesangial cell proliferation. Primary cu...
متن کاملProtease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice
Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 10 1 شماره
صفحات -
تاریخ انتشار 1999